Stability of Quartic Mappings in Non-Archimedean Normed Spaces

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Stability of additive mappings in non-Archimedean fuzzy normed spaces

In this paper we introduce a notion of a non-Archimedean fuzzy norm and study the stability of the Cauchy equation in the context of non-Archimedean fuzzy spaces in the spirit of Hyers–Ulam–Rassias–Găvruţa. As a corollary, the stability of the Jensen equation is established. We indeed present an interdisciplinary relation between the theory of fuzzy spaces, the theory of non-Archimedean spaces ...

متن کامل

Stability of the Generalized Quadratic and Quartic Type Functional Equation in Non-archimedean Fuzzy Normed Spaces∗

In this paper, we prove some stability results concerning the generalized quadratic and quartic type functional equation in the context of nonArchimedean fuzzy normed spaces in the spirit of Hyers-Ulam-Rassias. As applications, we establish some results of approximately generalized quadratic and quartic type mapping in non-Archimedean normed spaces. Also, we show that the assumption of the non-...

متن کامل

On the Generalized Hyers–ulam Stability of Quartic Mappings in Non–archimedean Banach Spaces

Let X ,Y are linear space. In this paper, we prove the generalized Hyers-Ulam stability of the following quartic equation n ∑ k=2 ( k ∑ i1=2 k+1 ∑ i2=i1+1 . . . n ∑ in−k+1=in−k+1 ) f ( n ∑ i=1,i =i1,...,in−k+1 xi − n−k+1 ∑ r=1 xir )

متن کامل

Stability of the quadratic functional equation in non-Archimedean L-fuzzy normed spaces

In this paper, we prove the generalized Hyers-Ulam stability of the quadratic functionalequation$$f(x+y)+f(x-y)=2f(x)+2f(y)$$in non-Archimedean $mathcal{L}$-fuzzy normed spaces.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Kyungpook mathematical journal

سال: 2009

ISSN: 1225-6951

DOI: 10.5666/kmj.2009.49.2.289